일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 손실함수
- 안드로이드
- 교차검증
- 오픈소스깃허브사용
- 취업연계
- MSE
- 선형모델 분류
- JSP/Servlet
- 활성화함수
- 백엔드
- 1차프로젝트
- 내일배움카드
- ERD
- 크롤링
- 2차 실전프로젝트
- 취업성공패키지
- semantic_segmentation
- 스마트인재개발원
- randomForest
- 프로젝트
- 2차프로젝트
- 국비지원
- KNN모델
- MVCmodel
- gitclone
- 머신러닝
- springSTS
- 하이퍼파라미터튜닝
- 비스포크시네마
- intent
- Today
- Total
목록randomForest (2)
또자의 코딩교실
이번 포스팅에서 다루는 모델들 Random forest Ada Boosting Gradient Boosting Machine XGBoost(lightGBM) Random Forest 과대적합을 이용해서 Bagging을 활용해 진행되는 머신러닝모델 작동방식 Random Sampling을 진행하여 서로 다른 방향으로 과대적합된 트리를 많이 만들고 평균을 내어 일반화 시킴. 각각의 변조된 데이터들을 다 만들고 모델에 돌려버린뒤 다수결로 밀어버리는 방식으로 최종 라벨값을 뽑아내는 모델 수정 가능한 Parameter들은 기존 Decision Tree 모델들과 동일하다 과대적합(Overfitting)문제를 회피하며 모델 정확도를 향상시키려고 개발되었음 장점 단점 - 실제값에 대한 추정값 오차 평균화 - 과대적합 감..
스마트 인재개발원의 후반과정을 듣다보면 머신러닝을 배우게 된다. 이때 많이 어려운 머신러닝 공부도 더 하고 2차프로젝트의 탄탄한 기술적 배경을 다지기위해 자체적으로 Kaggle 대회를 개최한다. Kaggle은 이전에 내 블로그 내에서도 타이타닉 분석을 통해 다룬적이 있지만, 캐글은 2010년 설립된 예측모델 및 분석 대회 플랫폼이다. 기업 및 단체에서 데이터와 해결과제를 등록하면, 데이터 과학자들이 이를 해결하는 모델을 개발하고 경쟁한다. 이번 Kaggle 대회의 문제는 이진분류 문제로, 쿠팡의 전자 상거래 물품 배송 예측이다. 즉, 물건이 제 시간에 잘 도착했는지, 도착하지 못했는지를 최종 예측하는 문제이다. 현재 총 24명(선생님 한분-팀)의 같은 과정을 수료하는 분들이 참여하고 있다. 한팀 당 6명..